Manned or Robotted: An argument for the latter

Jovonni Pharr

Jovonni pharr

Manned or Robotted: An argument for the latter

This project is on the comparison between artificially controlled space missions versus
manned space mission. As a result of many failed attempts at manned space missions, some
with fatal consequences, the scientific discussion about artificial intelligence vs human
intelligence has taken on new frontiers.

Alan Turing was a British pioneering computer scientist, mathematician, logician,
cryptanalyst, philosopher, and mathematical biologist. He is most famous for being the
scientist that cracked secret military communications during World War 2 from the famous
Enigma Cipher Machine. This gave the western powers a significant advantage over their
enemies. The cracked communications were morse-coded radio communications, and Dwight
D Eisenhower dictated that this served as a decisive event for the allied victory. Alan Turing
was also the person who created an examination framework for a system that is claimed as
“Intelligent”; this exam is well known as the Turing Test. The Turing Test, has become the
primary goal of computer scientists that are aiming to ever give birth to Atrtificial Intelligence. It
is the current state of this journey, to create an Artificially Intelligent agent, that enables this
paper to convey an argument, serving as a proponent of Atrtificially Controlled space missions
-- opposed to Human Controlled Missions.

There have been many scientific, and computational breakthroughs that allow
unmanned space missions to become more reliable; thus, allowing more trust in completely
unmanned expeditions. Using these breakthroughs, there have been very few space missions
that have taken advantage of the new capabilities. Although all space missions are not

completely manned, as computer systems are abundant on board, the purpose of this paper

is to highlight the specific breakthroughs in computational science, that enable intelligent
systems to perform far above results yielded by its human counterpart. This paper is founded
upon three concepts that support the potential success of artificially controlled space
expedition; these include Fuzzy Logic, Neural Networks, and Evolutionary Computing.

In the real world, everything is not so black and white. In the computational world,
there is no exception. Throughout the journey for Artificial Intelligence, there has been a need
for machine logic, to be expanded to further resemble the “gray-area” logic of the real world.
To accomplish such a task, new paradigms had to be adopted; for example, a paradigm that
possesses the flexibility to not only decide whether, or not a space shuttle is in danger, but
also determine the degree of “danger” at any given moment.

The methodology known as Fuzzy Logic is a paradigm that emphasizes
approximations, instead of fixed-value absolute numbers. This will highlight the capabilities to
expand boolean logic, into “truth values” -- in order to reproduce human like decision making.
This allows computational processes to make even more flexible, and real-world decisions.
Fuzzy Logic is a concept in artificial intelligent systems, and the concept of Fuzzy Logic is
built around the notion of having “fuzzy” truth values. In essence, a truth value is usually
determined by whether something is true, or false. However, in Fuzzy Logic, a truth value, is
no longer represented by boolean logic, but adopts a value that is between 0 and 1. So the
truth value becomes

0 <truthvalue <1

Using the Fuzzy Logic paradigm, a Fuzzy Logic Controller is initiated with a crisp, or

“fuzzy” number. The fuzzy inference system is a popular computing framework based on the

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. It has found successful

application in a wide variety of fields, such as automatic control, data classification, decision,

expert systems, time series prediction, robotics, and pattern recognition (Jang, Jyh-shing 73).
Let’s say we want to build a system that can decide whether or not our spaceship is in

danger of being hit by a particular object, SpaceDebris . Also, we would like to decide what our

space ship should do next. For this Fuzzy Logic problem, let’'s assume the following inputs x :

x =(SpaceDebristximity, SpaceDebris ApparentSize SpaceDebrisDensity)

A valid output can then be Danger ,,,.,, and here would be the rules for such problem:

SpaceDebris p, i, Tules

SpaceDebris ; ., ,yonsize TUlES

SpaceDebris g, rules

If SpaceDebrisp, i, 1S close
, then Danger ., is high

If SpaceDebris 4, ensize 1S big
, then Danger ., is high

If SpaceDebrisp,,g,, 1S high,
then Danger ;,,,; iS high

If SpaceDebrisp,, iy, 1S
medium , then Danger ,,,,; 1S
medium

If SpaceDebris 4, enssize 1S
medium , then Danger ,,, ., 1S
medium

If SpaceDebrisp,,q;, is
medium , then Danger ;. 1S
medium

If SpaceDebrisp, i, 18 far,
then Danger ;,,,, is low

If SpaceDebris 4, renssize 1S
small , then Danger ;. is
low

If SpaceDebrisp,,g;, is low,
then Danger ;,,,, is low

If a Fuzzy Logic Controller was built to deal with this decision making framework, it would

need real world inputs to represent each rule, in each of it's states. Doing so allows the

controller to “know” examples of each rule & state. In theory, everytime the Fuzzy Logic

Controller encounters a new input that is has not seen before, it converts the input (fuzzy), to

an output (crisp), using the inputs — outputs of all of the training cases that were used to build

the system. This is how the Fuzzy Logic Controllers can figure out a real world output, from an

ambiguous human-understandable input.

Rule base
IF ... THEN ...
IF ... THEN ...
IF ... THEN ...
System System

Input Inference Output
—O[Fuzzification }—0 System)| Defuzzification }—0

Data Base
Cold Warm Hot

Membership

Temperature

A real world example of what “medium proximity” means could be 30km away from the
ship, “small apparent size” could be represented as an object with 200c¢m in length, and “low
density” could be represented as an object with density of 25g. Fuzzy logic allows a system to
take advantage of an ambiguous term like, “small apparent size”. The values that represent a
correct example of each rule, are initially up to the discretion of the engineers building the
system, and what training cases they feed into the system. To actually run an instance of this

Fuzzy Logic Controller, let's assume the system received an input of:

X = (18Proximity> 214ApparentSize’ 25Density)

Each input is processed through the Fuzzy Logic Controller to produce defuzzified
outputs. This method allows the system to calculate what the most likely classification of each

input type. So the input of 18 would result in:

Proximity

y = (7 close> 3 medium> Ofar)

Here we have a stronger output of close, with .7. Remember, If SpaceDebrisp,, ., is close,
then Danger ., is high. If the system is to make a decision based off of this input alone, then
the system would determine that the “Ship is at a high danger level”, for the input value of
proximity . The system will take into account the other input values, and their inferenced
outputs; however, we only examined one input value in this example. Ideally, the system will
take the greatest value per each category, and make its decision based on the highest

Danger , .., value given by the Fuzzy Logic Controller. Here is what the membership function

graph, per each SpaceDebris,, would look like in the real system, for this example:

i Close Bdedium Far

Proegimity

0.5 —

Distance in km

1 Small MlediLmn Big

Apprent Size \ /
0.5

I | I
200 500 800

Apparent Size (diameter) in cm

Medium High

Lonar
Density \ /
0.5

Density in g
Fuzzy Logic Controllers work well by themselves, as there have been various large scale
projects made using this approach. Moreover, Fuzzy Logic works well when used in tandem
with other methodologies in Artificial Agent Computing.

Another example of a concept that supports Artificially Controlled Space Missions is
called a Neural Network. This allows a program to make decisions, based on a method that is
closely modeled after the human brain, and how the human brain makes decisions through
neural processes. There several components to a Neural Network, but we shall examine from
high level -- because of the purpose of this paper.

The benefits of a Neural Network, because it is modeled behind the processes of the
human brain, allows for the system to take inputs, and map them to predict what the outcome
should be, versus what it is. This involves many different steps, and that is a full paper in and

of itself. The difference between a Fuzzy Logic Controller, and Neural Network is in the

method of which is used to calculate an output. Similar to a Fuzzy Logic Controller, an input is
given, but sometimes there are no arbitrary rules written by the engineer. Once a value is
passed into an input layer node, it then outputs a total output value for its “decision unit”; it
can also be the case where those input layer neurons send their output to be used as input for
a single hidden layer of neurons, or multiple -- thus making it a “Deep” Neural Network. Each
Neuron can run its own internal calculations to adjust the input as it passes through the

network. The following is an example of a Neural Network:

Input Hidden Output
layer layer layer
Y
-
Input #1 -
| \:|
Input #2 2
{ | s - Output
r W 5
Input #3
.:/"“_
{
Input #4
-

As an input is given, it is adjusted by a weight before reaching the next layer. Each branch
between nodes, can have an associated weight that adjusts the output/input traveling through.
In the output layer of the network, the system takes the total output, and utilizes this output to
then decide a final output for the entire network.

Let’s look at an example of a Neural Network being used to decide the Danger ;,,,, of

our spacecraft, and let’s use the following inputs:

Sp acesh ip lowFuel> Sp acesh ip lowOxygen> Sp acesh ip nearObject> Sp acesh lp autoPilotOn

For this example, we can represent each input value as a boolean value -- as a true or false.

1 = true, 0 = false

Spaceship gwruer SPaceship gwowygen SPACESNIP nearopeer Spaceship auopiaton

Wiy Wiz Wiz Wiy
z z

Y Pl

f i

i FT { FEl’ -

W.I'T WJ';_:

L
{I_/II

Danger jayvar

After any Neural Network is architected, the network must then be trained with sample data,
and examples of correctly classified training cases. These training cases allow the network to
“‘learn” what features assist in generating a correct classification for any new test case. This
just means that the network learns from a set of training data, and then makes an attempt at
predicting what output will be yielded with a new set of input data that is has not encountered
-- by comparing the new input, with the training cases it has been given. Lets look at the
following training cases. There are many ways to evaluate a case, here are two:

z=b+Yxw,

1

zZ =X W,
i

b = a bias term, if applicable

z = total output X = input

w = weight of y of decision unit ¥y = output of decision unit

Spaceship pyruel SPaceShip pwoxygen SPACESNIP nearopjecr Spaceship auiopioion

Danger jgye = 100

Spaceship pyrusl SPaCceSNIp pwoxygen SPACESNIP nearcbject Spaceship auigpigion

Danger jgye =40

Spaceship pwrusi SPaceship pwoxygen SPACESNIP nearopject Spaceship auipusion

Danger jayg = 60

10

Once this model has been trained, it can then make a guess when a new input vector is
given, in the service of generating a correctly valued output. In more general terms, the
network tries to minimize the error that it makes in predicting different outputs, for each input
vector. Systematically, the network learns by increasing weights for correctly valued cases,
and decreasing weights for incorrectly valued cases.

Using advanced techniques that are built on top of a Neural Network, a system can
begin to learn what features it should be paying attention to -- opposed to the engineer
hardcoding the rule set into the network directly. In order to do this, the network can utilize a
methodology known as back-propagation. The back-propagation algorithm is a constant step
size, gradient descent procedure to iteratively adjust the weights of the neurons in a
multi-layer feedforward neural network (Antsaklis 4). Using the power of derivatives, and rate
measurements, back-propagation allows for a network to take the Error Derivative, with
respect to the total output of the network. If one calculates this error derivative on the output
layer/node, using the chain rule, one can calculate the error derivative, with respect to the

total input of the layer preceding the output layer. Here is how you find the error E, and the

derivative 2£ of the output layer/node:
Y j

E=3; % (tj_yj)z

J € output

v ()

This approach enables the network to learn important features, beyond those of which it was
initially programmed. It learns by observing how the error £ changes, with respect to the

output y ;. There are several other advanced methodologies using Neural Networks, and they

11

add to capabilities that can be demonstrated through a Deep Neural Network. The
back-propagation algorithm is just an example of many expansions of this approach, that
allows for very deep neural network problem solving. Space Mission Systems that utilize
Deep Neural Networks for task performance have an advantage over Space Mission Systems
that don’t. Like | stated before, this is a complete paper in and of itself.

The final approach that lends support to an Artificially Controlled space mission is
called Evolutionary Computation, and this is defined as computational architecture that is
closely modeled after the understood nature of evolution. Evolutionary Algorithms are used to
solve computationally heavy problems by allowing the program to evaluate solutions based on
how various candidate solutions behave within specific landscapes. This allows these
algorithms to evaluate large amounts of different solutions to decide which would be the best
solutions to the given problem.

Evolutionary Computing allows computer scientists to take advantage of the creative,
random, and iterative properties that evolution & nature have to offer. This enables programs
to advance the behaviors of the organisms within their local environments, and actually
produce offspring that have combinations of attributes from several different local organisms.
The process begins with an initial selection of a population of models/solutions, and this can
be arbitrary.

In evolutionary computational techniques, a population of these models is created and
input parameters are varied. The results are evaluated using fitness functions and a
percentage of the highest fitness individuals from one generation is promoted to the next
generation, while new models are created through variation -- by mutation or cross-over
(Terrile 2). In evolutionary computation, a population is defined as a set of possible solutions

to the given problem. The fitness function yields a fitness ;... per each solution within the

12

population. This fitness ... function can take on many different forms, as some methods work
better with specific problems, and not as good with others. To judge fitness score, W€ Can use a

threshold. This is what the threshold function 6 would look like:

ifﬁtness score > 0 ifﬁtness score < 0

then population score = 2 fitness score then population score = fitness score

After all of the solutions within the population have been scored, the evolutionary
system will then analyze for whether or not an acceptable solution has been reached within
the population. If an acceptable solution has not been met, the system will then use the
scores to decide which solutions should be reproduced to generate the next population of
solutions. Consequently, if an acceptable solution has been met, then the generation stops
evolving, and the solutions stay active within the environment. Here is an illustration of this

process.

{ start

Generate
initial
population

Determine
Fitness ‘

I Acceptable
i_End 2t E:I:lﬁun Fuunb
T
Ma

Select

Individuals to —-*(Crossover »-»-’ Mutaticn

reproduce

13

Let’'s observe a twisted scenario where the spaceShuttle has been breached by a

cabin

gas Let’'s assume that there is no device on board that can detect all types of gases,

mysterious *

and their respective elemental composition. If one were to design an evolutionary system that

is purposed with guessing what gas is inside the cabin, the system could look like this:

Initial Population Fitness Score / test Acceptable Solution
8aS pydrogen is determined by how is achieved if a given
245 irogen different the given solution’s | solution’s gas composition,
gas gas composition, gas « , is to | gas . , is indifferent from the

the gas composition inside gas composition inside the
the cabin, gas cabin, gas

mysterious mysterious

Lets assume that the gas that has leaked inside of the cabin, is N ,O; if we begin with this

population none of the proposed solutions from this generation will reach solution

initial ? acceptable

that is similar to gas in the cabin. When that happens, the current generation

mysterious

undergoes a crossover, and a mutation that causes the next generation of solutions to
become crossbreeds of the generation that precedes. This allows the system to try many
different combinations of solutions. Soon enough after a few generations, this Evolutionary

System will generate population ,.,, that contains N ,O; thus, matching gas in the

mysterious

cabin -- thus, reaching solution This will cause the evolutionary system to cease

acceptable *
reproducing more generations -- at least until a new gas composition leaks into the cabin, and
system begins again.

Limitations of Neural Networks, Fuzzy Logic Controllers, and Evolutionary
Computational Systems exist in a myriad of facets. Ultimately, these systems are, by nature,

bounded by the rationality behind their design. Just as in scientific history, models existed,

that were hailed as the best approach for that time. Like with many scientific methodologies,

14

there may exist a better approach that is not yet in use. However, with just these three
methodologies in the race to create an Artificially Intelligent Agent, we can now design an
artificially controlled space mission, that can perform a task better than its human counterpart.
In fact, there has been a framework made by engineers at NASA that encompasses all three
of these methodologies into a single framework specific for space exploration by artificial
systems; ironically it is called PERSON. This framework is just one of many that encompass
the benefits received when using Fuzzy Logic Controllers, Deep Neural Networks, and

Evolutionary Computational Systems together.

15

Sources:
Jang, Jyh-shing. "4." Neuro-Fuzzy and Soft Computing. Prentice Hall, 1997. Print.

Antsaklis, P.j. "Neural Networks for Control Systems." IEEE Transactions on Neural Networks
1.2 (1990): 242-44. Web.

Scharnow, Jens, Karsten Tinnefeld, and Ingo Wegener. "The Analysis of Evolutionary
Algorithms on Sorting and Shortest Paths Problems."Journal of Mathematical Modelling and
Algorithms 3.4 (2004): 349-66. Web.

Johnston, M.D, and Adorf, H.M. "Scheduling with Neural Networks The Case of Hubble Space
Telescope." Computers and Operations Research, Special Issue on Neural Networks (n.d.):
n. pag. Print.

Terrile, Richard J., and Christopher Adami. "Evolutionary Computation Technologies for
Space Systems." (n.d.): n. pag. Print.

